PRAMIS

Background

- Voltage-gated sodium channels (Na $_{v}$), which contribute to action potential initiation and propagation, are important therapeutic targets for anti-seizure medications (ASMs).¹
- Persistent I_{Na}, a small non-inactivating current, can lead to neuronal hyperexcitability and has been proposed as a novel pharmacological target for reducing pathologic neuronal hyperactivity, while sparing physiological peak sodium current (I_{Na}) is critical to ensuring normal neuronal function.²⁻⁶
- Na_v-targeting ASMs¹ can display severe toxicity at therapeutic doses, likely resulting from excessive inhibition of peak I_{Na}.
- Novel compounds that spare a physiological level of peak I_{Na} may therefore improve efficacy and tolerability; a hypothesis supported by previous work with persistent I_{Na} inhibitors.⁷⁻¹²
- PRAX-628 was identified as a highly differentiated, potent and activity dependent (UDB) I_{Na} blocker.
- The current study thus aimed to compare the inhibition profile of PRAX-628 on persistent and peak I_{Na} to those of standard Na_{V} -targeting ASMs and investigational compounds.

Methods

Persistent and Peak I_{Na} Inhibition: HEK-293 Electrophysiology

- Persistent and peak I_{Na} inhibition was studied using PatchXpress automated whole-cell patch clamp
- recordings of HEK-293 cell lines stably expressing human Na_v1.6 (hNa_v1.6; NP_055006).
- Voltage protocols measured I_{Na} inhibition in multiple modes:
- Persistent I_{Na} (Vm -120mV, 200ms)
- Tonic block (TB; Vm -120mV, 0.2Hz)
- Voltage-dependent block (VDB; Vm inactivation $V_{1/2}$)
- Activity/use dependent block (UDB, Vm -120mV, 10Hz)
- Data were processed using DataXpress 2.0.
- Persistent I_{Na} (200 nM ATX-II) or peak I_{Na} were measured using voltage protocols depicted as insets and percent inhibition was calculated.
- Data were fitted using a Hill equation [Max_Effect/(1+(IC₅₀/x)^Hill_Slope] to estimate IC₅₀ and Hill slope using GraphPad Prism.

Binding Kinetics

- Binding kinetics were inferred from inhibition kinetics.
- The apparent binding rate (K_{ON}) was measured using the time-dependent inhibition of I_{Na} during a variable length conditioning pulse.
- The apparent unbinding rate (K_{OFF}) was measured using the time-dependent delay in the recovery of I_{Na} following an inactivating conditioning pulse.

References

- 1. Subbarao & Eapen 2020 StatsPearls Publishing
- 2. Oyrer et al. 2018 *Pharmacol Rev*
- 3. Wengert 2021 Epilepsy Curr
- 4. Stafstrom 2007 Epilepsy Curr
- 5. Stafstrom 2011 *Epilepsy Curr*
- 6. Vreugdenhil et al. 2004 Eur J Neurosci
- 7. Anderson et al. 2017 Sci Rep
- 8. Baker et al. 2018 *Epilepsia*

PRAX-628: A Novel Sodium Channel Blocker with Greater Potency and **Activity Dependence Compared to Standard of Care**

PRAX-628 Exhibits Enhanced Activity Dependent Inhibition of hNa_v1.6 Peak I_{Na}

- PRAX-628 exhibited enhanced activity-dependent block which has been suggested to convey beneficial activity during periods of hyperexcitability.
- Less activity-dependent block was observed for the other tested agents, including carbamazepine and lamotrigine.

Figure 1. PRAX-628 demonstrates increased potency for I_{Na} and greater activity-dependent block of **Peak I_{Na} relative to other tested Na_V targeting ASMs.** Peak I_{Na} block assessed using assays for (A) tonic block, (B) use-dependent block, or (C) voltage-dependent block. Peak I_{Na} was measured at the beginning of the voltage step. (D) PRAX-628 demonstrated potent inhibition of persistent I_{Na} and enhanced activity dependent inhibition of peak I_{Na}. (E) Carbamazepine and (F) lamotrigine exhibited lower potency and preference for persistent I_{Na} (*red arrows*) and minimal activity dependent block of peak I_{Na} (*blue traces*). Voltage protocols included as *panel insets*; pharmacology measured at *green arrow*; points represent mean ± SEM.

9. Bunton-Stasyshyn et al. 2019 Brain 10. Anderson et al. 2014 Epilepsia 11. Wengert et al. 2019 Neuropharmacology 12. Kahlig et al. 2022 Epilepsia

Acknowledgments We thank our collaborators for their contributions to this work, including scientists at Chempartner, the Florey Neuroscience Institute, and Icagen. **Funding** All work was funded by Praxis Precision Medicines. Medical writing and editorial assistance were provided by Lillian G. Matthews in accordance with Good Publication Practice (GPP3).

Disclosures KMK and SP are current or former employees/consultants of Praxis Precision Medicines and may be Praxis stockholders.

¹Praxis Precision Medicines, Boston, MA 02110 USA; ²ICAGEN Ion Channel Technology, Durham, NC 27703 USA

PRAX-628 Exhibits Potent Inhibition of hNa_v1.6 Persistent I_{Na}

- PRAX-628 blocked hNa_v1.6 persistent I_{Na} with an IC₅₀ of 128nM (68x preference to TB), which was at least 550x more potent than the other tested I_{Na} blocking agents.
- The inhibitory profile of PRAX-628 was different than that of carbamazepine and cenobamate.
- PRAX-628 inhibited persistent I_{Na} across Na_v isoforms and orthologs.

Figure 2. PRAX-628 is a potent inhibitor of persistent I_{Na}. PRAX-628 reduced (A) ATX-II evoked hNa_v1.6 persistent I_{Na} (B) PRAX-628 demonstrated increased potency for persistent I_{Na} relative to standard Na_v-targeting ASMs. (C) PRAX-628 inhibited ATX-II induced persistent I_{Na} expressed by multiple Na_v isoforms and orthologs. Voltage protocol included as *panel inset*; pharmacology measured at *green* arrow; points represent mean ± SEM.

Table 1. PRAX-628 demonstrates greater activity dependance for peak I _{Na} compared with a panel of	f
standard-of-care Na _v -targeting ASMs	

IC ₅₀ , nM (Slope)	Persistent I _{Na}	Peak I _{Na} TB	Ratio to Pers. I _{Na}	Peak I _{Na} UDB-10Hz	Ratio to Pers. I _{Na}	Peak I _{Na} VDB	Ratio to Pers. I _{Na}
PRAX-628	128 (1.4)	8,707 (1.0)	68	200 (0.7) Max 100%	1.6	72 (1.0)	0.56
Cenobamate	71,690 (1.1)	1,719,000 (1.1)	24	749,300 (0.7)	11	66,710 (0.9)	0.9
Phenytoin	59,820 (0.8)	n/a**		876,600 (0.6)	15	47,780 (1.0)	0.8
Carbamazepine	77,490 (1.1)	2,307,000 (1.0)	30	1,418,000 (0.9)	18	44,370 (0.9)	0.6
Oxcarbazepine	123,700 (1.0)	1,035,000 (1.7)	8	n.d.		42,000 (1.1)	0.3
Lamotrigine	78,480 (1.0)	1,249,000 (0.8)	16	515,800 (1.0)	6.6	39,090 (0.9)	0.5
Lacosamide	832,700 (0.9)	n/a**		682,200 (1.3)	0.8	269,300 (1.2)	0.3
Valproic acid	2% @ 1 mM	11 @ 1 mM		8% @ 1 mM		18% @ 1 mM	

Data are IC_{50} (nM) with the Hill slope in parenthesis. **could not be determined due to compound solubility limit n.d.=not determined: Pers.=persistent; TB=tonic block; UDB=use-dependent block; VDB=voltage-dependent block

Conclusions

- PRAX-628 is a next generation Na_v blocker with enhanced targeting of the I_{Na} activity contributing to neuronal hyperexcitability.
 - Greater potency and preference for persistent I_{Na}
 - \succ Greater activity dependent inhibition (UDB) of peak I_{Na}
- This preferential targeting of neuronal hyperexcitability may represent a differentiated therapeutic option for diseases of hyperexcitability, where standardof-care Na_v blockers have demonstrated efficacy but poor tolerability.

@PraxisMedicines

Praxismedicines.com

kris@praxismedicines.com

Kristopher M. Kahlig¹, Mark Chapman², Steve Petrou¹

PRAX-628 Exhibits Faster Apparent Binding and Moderate Apparent Unbinding Kinetics

- Binding kinetics are a key feature for differentiating Na_v blockers.
- The combination of the rapid development and recovery from inhibition is hypothesized to selectively target pathological neuronal hyperexcitability, while sparing physiological activity.

Figure 3. The development and recovery from inhibition can be used to derive the apparent binding and apparent unbinding rates of a small molecule Na_v blockers. The increased potency and activity dependence of PRAX-628 originates from the rapid development of inhibition (apparent K_{ON} = 4.2 s⁻¹ * μ M⁻¹) paired with a moderate dissociation rate (apparent $K_{OFF} = 1.7 \text{ s}^{-1}$).

Figure 4. PRAX-628 exhibits fast apparent binding and moderate apparent unbinding compared to a panel of standard of care Na_v blockers. The K_{ON} for PRAX-628 was fast compared to the other tested compounds (>1,500x versus carbamazepine). The K_{OFF} from PRAX-628 was slower than carbamazepine (33x) suggesting a longer, but not excessive residence time. A representative hNav1.6 isoform selective inhibitor exhibits a very slow unbinding rate (2,079x slower than carbamazepine).

Presented at: American Academy of Neurology AAN 2023 Annual Meeting April 22-27, 2023 Boston, Massachusetts, USA