

# PRAX-562 is a Well-Tolerated, Next Generation Anti-Seizure Small Molecule with Broad Anticonvulsant Activity in Multiple DEE Mouse Models

<sup>1</sup>Praxis Precision Medicines, Boston, MA 02110 USA; <sup>2</sup>The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, AUS; <sup>3</sup>Dept. Pharmacology, University of Virginia Health System, Charlottesville, VA, 22908

### Background

- Persistent sodium current (I<sub>Na</sub>), a subthreshold depolarizing current, contributes to the amplification of synaptic activity and enhancement of repetitive firing.<sup>1,2</sup>
- Some voltage-gated sodium channel (Na<sub>v</sub>) gain-of-function (GOF) variants cause pathological increases in persisten  $I_{Na}$  that contribute to the neuronal hyperexcitability observed in severe developmental and epileptic encephalopathies (DEE).<sup>2-6</sup>
- Pathological Persistent Curren
- We previously showed PRAX-562 inhibits persistent I<sub>Na</sub> with improved preference over peak I<sub>Na</sub> compared to standard of care.<sup>7</sup>
- This profile was efficacious in DEE mouse models with GOF mutations in *Scn8a* (Na<sub>v</sub>1.6) and *Scn2a* (Na<sub>v</sub>1.2).<sup>8</sup>

## Objective

> To further profile the anticonvulsant efficacy of PRAX-562 and determine whether efficacy extends to non-Na<sub>v</sub> DEE models Kcng2<sup>K556E/+</sup>, Kcnc1<sup>R320H/+</sup> and Hcn1<sup>M305L/+</sup>

# Methods

- Acute seizure models. Wild-type (WT) male CD-1 mice were used for maximal electroshock seizure (MES) and 6-Hz acute seizure experiments. Mice were administered either vehicle or PRAX-562 by oral gavage 30 min prior to electrical stimulus. Transauricular (50 Hz, 0.8 s, 10 ms square pulse width, 50 mA) and corneal electroshocks (6 Hz, 3 s, 0.2 ms rectangular pulse width, 32 mA) were delivered for MES and 6-Hz experiments, respectively. Mice were observed for the presence or absence of full tonic hindlimb extension (MES), or psychomotor seizures defined as stun/immobility, forelimb clonus, Straub tail and lateral head movement (6-Hz).
- Na<sub>v</sub> DEE models. Anticonvulsant activity of PRAX-562 was evaluated by comparing the number of spontaneous seizures during a 30 min pre-treatment period with the number occurring during a 30 min post-treatment period in *Scn2a*<sup>Q54</sup> mice. Scn8a<sup>N1768D/+</sup> mice were treated with vehicle or PRAX-562 by oral gavage 60 min prior to acoustic stimulus (15 kHz). Mice were observed for the presence or absence of seizure.
- Non-Na<sub>v</sub> DEE models. Mice (Kcnq2<sup>K556E/+</sup>, Kcnc1<sup>R320H/+</sup>, Hcn1<sup>M305L/+</sup>) were pre-treated with vehicle or PRAX-562 by oral gavage 60 min prior to administration of PTZ (100 mg/kg, s.c.). Mice were observed until the onset of first tonic-clonic seizure with hindlimb extension or a time of 40 min was reached.

# In Vitro Pharmacology Profile

Table 1. PRAX-562 demonstrates greater potency and preference for hNa<sub>v</sub>1.6 persistent  $I_{Na}$  compared with a panel of standard Na<sub>v</sub>-targeting ASMs

|               | Persistent<br>I <sub>Na</sub> | Peak I <sub>Na</sub><br>TB | Ratio to<br>Pers. I <sub>Na</sub> | Peak I <sub>Na</sub><br>UDB-10Hz      | Ratio to<br>Pers. I <sub>Na</sub> | Peak I <sub>Na</sub><br>VDB | Ratio to<br>Pers. I <sub>Na</sub> |
|---------------|-------------------------------|----------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-----------------------------|-----------------------------------|
| PRAX-562      | <b>141</b><br>(1.2)           | <b>8,472</b><br>(1.0)      | 60                                | <b>271</b><br>(1.3)<br>max <b>75%</b> | 2                                 | <b>317</b><br>(1.0)         | 2.2                               |
| Carbamazepine | <b>77,490</b><br>(1.1)        | <b>2,307,000</b><br>(1.0)  | 30                                | <b>1,418,000</b><br>(0.9)             | 18                                | <b>44,370</b><br>(0.9)      | 0.6                               |
| Lamotrigine   | <b>78,480</b><br>(1.0)        | <b>1,249,000</b><br>(0.8)  | 16                                | <b>515,800</b><br>(1.0)               | 6.6                               | <b>39,090</b><br>(0.9)      | 0.5                               |

Data are  $IC_{50}$  (nM) with the hill slope in parenthesis.

ASM=antiseizure medications; Pers.=persistent; TB=tonic block; UDB=use-dependent block; VDB=voltage-dependent block

# References

- 1. French et al. 1990 J Gen Physiol
- 2. Wengert 2021 Epilepsy Curr
- 3. Oyrer et al. 2018 Pharmacol Rev
- 4. Stafstrom 2007 Epilepsy Curr
- 5. Stafstrom 2011 *Epilepsy Curr*
- 6. Vreugdenhil et al. 2004 Eur J Neurosci
- 7. Kahlig et al. 2022 Epilepsia
- 8. Scott et al. 2021 AES Annual Meeting

### Nikola Jancovski<sup>2</sup>, Lyndsey Anderson<sup>1</sup>, William A. Eckert, III<sup>1</sup>, Erin Baker<sup>3</sup>, Pravin K. Wagley<sup>4</sup>, Snezana Maljevic<sup>2</sup>, Chris Reid<sup>2</sup>, Manoj K. Patel<sup>4</sup>, Jennifer A. Kearney<sup>3</sup>, Kristopher M. Kahlig<sup>1</sup>, Steven Petrou<sup>1</sup>



Acknowledgments We thank the staff at ChemPartner for conducting MES studies and InterVivo Solutions for conducting 6-Hz studies. We also thank the animal care staff for husbandry of the animals involved in these studies **Ethical Statement** All *in vivo* studies were performed in accordance with local and institutional animal care and use guidelines. **Funding** All studies were funded by Praxis Precision Medicines. Medical writing and editorial assistance were provided by Lillian G. Matthews in accordance with Good Publication Practice (GPP3). **Disclosures** LA, BE, KK and SP are current or former employees/consultants of Praxis Precision Medicines and may be Praxis stockholders.



| Table 2. PRAX-562 summary of ED <sub>50</sub> and EC <sub>50</sub> values |                             |                                    |                             |                                    |                             |                                    |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------------------------------|-----------------------------|------------------------------------|--|--|--|--|
|                                                                           | Efficacy (MES)              |                                    | Scn2a-Q54                   |                                    | Scn8a-N1768D                |                                    |  |  |  |  |
|                                                                           | ED <sub>50</sub><br>(mg/kg) | Plasma EC <sub>50</sub><br>(ng/mL) | ED <sub>50</sub><br>(mg/kg) | Plasma EC <sub>50</sub><br>(ng/mL) | ED <sub>50</sub><br>(mg/kg) | Plasma EC <sub>50</sub><br>(ng/mL) |  |  |  |  |
| PRAX-562                                                                  | 2.2                         | 102                                | 1.6                         | 34                                 | 3.3                         | 101                                |  |  |  |  |

@PraxisMedicines

Praxismedicines.com

spetrou@praxismedicines.com

# PRAX-562 Anticonvulsant Activity Extends to Some Non-Na, DEE Mouse Models

• PRAX-562 (10 mg/kg) is anticonvulsant against PTZ-induced seizure in *Kcnq2*<sup>K556E/+</sup> and *Kcnc1*<sup>R320H/+</sup> mice.



# Conclusions

- PRAX-562 exhibits robust anticonvulsant activity across mechanistically divergent genetic models of pediatric DEEs.
- PRAX-562 is more potent than existing treatments in MES acute seizure model.
- The profile of PRAX-562 suggests a wide therapeutic window with potential for superior safety and efficacy.

**Presented at:** International Epilepsy Congress 2 - 6 September 2023 Dublin, Ireland

